Majorana or not? A closer look at Fe(Se,Te)

A. Maiti¹, M. Uldemolins¹, A. Mesaros¹, G. D. Gu², A. Palacio-Morales¹, M. Aprili, P. Simon¹ and F. Massee¹

¹ LPS Orsay; ² Brookhaven National Laboratory

The search for Majorana fermions in condensed matter systems has resulted in a number of putative claims of their discovery. If true, these exotic particles that are their own anti-particle could be exploited for error-free quantum computing, turning a fundamental curiosity into a billion dollar business. Unambiguous proof, however, is thus far lacking and challenging to provide. A recently proposed method to distinguish Majorana bound states from more conventional Andreev-, and Yu-Shiba-Rusinov states is to measure their shot noise [1]. Using our MHz enabled scanning tunnelling microscope [2], we set out to investigate three possible Majorana sightings in Fe(Se,Te): zero energy bound states at single Fe impurities [3], linear sub-gap density of states at 1D defects [4] and vortex cores. In this talk I will discuss our findings.

REFERENCES

- 1. Phys. Rev. B 104, L121406 (2021)
- 2. Rev. Sci. Instrum. 89, 093708 (2018)
- 3. Nature Communications **15**, 8526 (2024)
- 4. Nature Communications 15, 3774 (2024)