Quasiparticle interferences and chirality texture in twisted bilayer graphene

F. Mesple¹, <u>P. Mallet²</u>, G. Trambly de Laissardière³, C. Dutreix⁴, G. Lapertot⁵, J.Y. Veuillen², V.T. Renard⁵

¹Department of Physics, University of Washington, Seattle, Washington, 98195, USA

²Institut Néel, CNRS et Université Grenoble Alpes, 38000 Grenoble, France

³LPTM, CNRS et CY Cergy Paris Université, 95302 Cergy-Pontoise, France

⁴LOMA, CNRS et Université Bordeaux, F-33400 Talence, France

⁵Univ. Grenoble Alpes, CEA, IRIG, PHELIQS, F-38000 Grenoble, France

The rich physics of magic angle twisted bilayer graphene (TBG) results from the Coulomb interactions of electrons in nearly flat bands of non-trivial topology [1]. While the bands' dispersion of TBG can be characterized by ARPES, accessing their topology remains an experimental challenge. Here, we perform STM/STS measurements on a moiré pattern (MP) in a TBG tilted by 4.3°, focusing on a pointlike impurity (Fig. 1a). We observe in the low-energy LDOS map (Fig. 1b) quasiparticle interferences (QPIs) resulting from intravalley backscattering processes off the impurity, between Dirac cones of graphene layers 1 and 2. Those QPIs show up in the Fourier transform of the LDOS, as incomplete rings centered at the corners of the mini-Brillouin zone (mBz) associated to the MP (Fig. 1c). Measuring the radius of these rings at various energy reveals the Fermi-velocity renormalization expected for low-angle TBG [2,3]. Rationalized by tight binding calculations and T-matrix theory, our work shows that the QPIs are strongly impacted by the relative chirality of the Dirac cones of layer 1 and 2 in each valley, as intuited in Ref. [4]. We find that within a given valley, the two Dirac cones have the same electronic chirality, as expected in the continuum model derived for TBG [2,3], discarding other "simplified" models [5]. Eventually, our work provides a full picture of the band structure of lowangle TBG below and above the Dirac-cones crossing of the TBG [6].

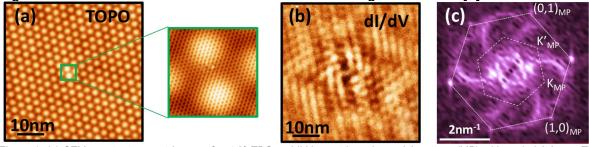


Figure 1: (a) STM constant current image of a 4.3° -TBG, exhibiting a triangular moiré pattern (MP) with period 3.3 nm. The image encompasses an impurity located within the green boxed region. Sample bias $V_S = +0.30V$, tunneling current $I_T = 0.14$ nA. (b) LDOS map at $E_F + 0.30$ eV of the same area, with characteristic QPIs at the moiré scale surrounding the impurity. (c) 2D Fast Fourier transform of (b), exhibiting incomplete rings centered at the corners K_{MP} and K'_{MP} of the mBz associated to the MP.

References

- 1. B.A. Bernevig and D.K. Efetov, », Physics Today 77, 38 (2024)
- 2. J.M.B. Lopes dos Santos et al., Phys. Rev. Lett. 99, 256802 (2007)
- 3. R. Bistritzer and A.H. MacDonald, PNAS 108, 12233 (2011)
- 4. V.T. Phong and E.J. Mele, *Phys. Rev. Lett.*, **125**, 176404 (2020)
- 5. L. Zou et al., *Phys. Rev. B* **98**, 085435 (2018)
- 6. F. Mesple et al., arXiv:2506.08913v2